4768 Statistics 3

Q1 (a)	$\mathrm{f}(x)=\lambda x^{c}, 0 \leq x \leq 1, \lambda>1$			
(i)	$\begin{aligned} & \int_{0}^{1} \lambda x^{c} \mathrm{~d} x=1 \\ & \therefore\left[\frac{\lambda x^{c+1}}{c+1}\right]_{0}^{1}=1 \\ & \therefore \frac{\lambda}{c+1}=1 \quad \therefore c=\lambda-1 \end{aligned}$	M1 M1 A1	Correct integral, with limits (possibly appearing later), set equal to 1 . Integration correct and limits used. c.a.o.	3
(ii)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} \lambda x^{\lambda} \mathrm{d} x \\ & =\left[\frac{\lambda x^{\lambda+1}}{\lambda+1}\right]_{0}^{1}=\frac{\lambda}{\lambda+1} \end{aligned}$	M1 M1 A1	Correct form of integral for $\mathrm{E}(X)$. Allow c's expression for c. Integration correct and limits used. ft c's c.	3
(iii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\int_{0}^{1} \lambda x^{\lambda+1} \mathrm{~d} x \\ & \quad=\left[\frac{\lambda x^{\lambda+2}}{\lambda+2}\right]_{0}^{1}=\frac{\lambda}{\lambda+2} . \\ & \operatorname{Var}(X)=\frac{\lambda}{\lambda+2}-\left(\frac{\lambda}{\lambda+1}\right)^{2}=\frac{\lambda(\lambda+1)^{2}-\lambda^{2}(\lambda+2)}{(\lambda+2)(\lambda+1)^{2}} \\ & =\frac{\lambda^{3}+2 \lambda^{2}+\lambda-\lambda^{3}-2 \lambda^{2}}{(\lambda+2)(\lambda+1)^{2}}=\frac{\lambda}{(\lambda+2)(\lambda+1)^{2}} . \end{aligned}$	M1 A1 M1 A1	Correct form of integral for $\mathrm{E}\left(X^{2}\right)$. Allow c's expression for c. Use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. Allow c's $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}(X)$. Algebra shown convincingly. Beware printed answer.	4
(b)	Times -32 Rank of \|diff 40 8 4 20 -12 7 18 -14 8 11 -21 12 47 15 9 36 4 2 38 6 3 35 3 1 22 -10 5 14 -18 10 12 -20 11 21 -11 6$W_{+}=1+2+3+4+9=19$ Refer to Wilcoxon single sample tables for $n=12$. Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used). Result is not significant. Seems that there is no evidence that Godfrey's times have decreased.	M1 M1 A1 B1 M1 A1 A1 A1	$\mathrm{H}_{0}: m=32, \quad \mathrm{H}_{1}: m<32$, where m is the population median time. for subtracting 32. for ranks. ft if ranks wrong. $\begin{aligned} & \text { (or } W_{-}=5+6+7+8+10+11+12 \\ & =59 \text {) } \end{aligned}$ No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	8
				18

\begin{tabular}{|c|c|c|c|c|}
\hline Q2 \& \[
\left.\begin{array}{l}
V_{G} \sim N(56.5, \\
V_{W} \sim N\left(38.4,9^{2}\right) \\
\hline
\end{array} .1^{2}\right)
\] \& \& When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. \& \\
\hline (i) \& \[
\begin{aligned}
\& \mathrm{P}\left(V_{G}<60\right)=\mathrm{P}\left(\mathrm{Z}<\frac{60-56.5}{2.9}=1.2069\right) \\
\& =0.8862
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& For standardising. Award once, here or elsewhere. \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\& V_{T} \sim \mathrm{~N}(56.5+38.4=94.9, \\
\& \mathrm{P}(\text { this }>100)=\mathrm{P}\left(Z>\frac{100-94.9}{3.1016}=1.6443\right) \\
\& =1-0.9499=0.0501
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 3.1016). \\
c.a.o.
\end{tabular} \& 3 \\
\hline (iii) \& \[
\begin{aligned}
\& W_{T} \sim \mathrm{~N}(3.1 \times 56.5+0.8 \times 38.4=205.87, \\
\& \left.\quad 3.1^{2} \times 2.9^{2}+0.8^{2} \times 1.1^{2}=81.5945\right) \\
\& \mathrm{P}(200<\text { this }<220) \\
\& =\mathrm{P}\left(\frac{200-205.87}{9.0330}<Z<\frac{220-205.87}{9.0330}\right) \\
\& =P(-0.6498<Z<1.5643) \\
\& =0.9411-(1-0.7422)=0.6833
\end{aligned}
\] \& M1
A1
M1
A1
M1

A1 \& | Use of "mass $=$ density \times volume" Mean. |
| :--- |
| Variance. Accept sd (= 9.0330). |
| Formulation of requirement. |
| c.a.o. | \& 6

\hline (iv) \& | Given $\quad \bar{x}=205.6 \quad s_{n-1}=8.51$ |
| :--- |
| $\mathrm{H}_{0}: \mu=200, \mathrm{H}_{1}: \mu>200$ |
| Test statistic is $\frac{205.6-200}{\frac{8.51}{\sqrt{10}}}$ $=2.081$ |
| Refer to t_{9}. |
| Single-tailed 5\% point is 1.833 . |
| Significant. |
| Seems that the required reduction of the mean weight has not been achieved. | \& M1

A1

M1

A1
A1

A1 \& | Allow alternative: 200 + (c's 1.833) $\times \frac{8.51}{\sqrt{10}}(=204.933)$ for subsequent comparison with \bar{x}. |
| :--- |
| (Or $\bar{x}-\left(c^{\prime} s 1.833\right) \times \frac{8.51}{\sqrt{10}}$ |
| (= 200.667) for comparison with 200.) |
| c.a.o. but ft from here in any case if wrong. |
| Use of $200-\bar{x}$ scores M1A0, but ft . |
| No ft from here if wrong. $\mathrm{P}(t>2.081)=0.0336$. |
| No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. | \& 6

\hline \& \& \& \& 18

\hline
\end{tabular}

Q3				
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction in hormone concentration. Must assume - Sample is random - Normality of differences	B1 B1 B1 B1	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{A}-\mu_{B}$ etc provided adequately defined. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	4
(iii)	MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are $\begin{array}{llllllll} -0.75 & 2.71 & 2.59 & 6.07 & 0.71 & -1.85 & -0.98 & 3.56 \\ \bar{x}=1.65 & s_{n-1}=2.100(3) & \left(s_{n-1}{ }^{2}=4.4112\right) \end{array}$ Test statistic is $\frac{1.65-0}{\frac{2.100}{\sqrt{ } 15}}$ = 3.043. Refer to t_{14}. Single-tailed 1\% point is 2.624 . Significant. Seems mean concentration of hormone has fallen.	1.77 B1 M1 A1 M1 A1 A1 A1	Allow "after - before" if consistent with alternatives above. $\begin{array}{llllll}2.95 & 1.59 & 4.17 & 0.38 & 0.88 & 0.95\end{array}$ Do not allow $s_{n}=2.0291\left(s_{n}{ }^{2}=\right.$ 4.1171) Allow c's \bar{x} and/or s_{n-1}. Allow alternative: 0 + (c's 2.624) \times $\frac{2.100}{\sqrt{15}}(=1.423)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-(c$'s 2.624$) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft. No ft from here if wrong. $\mathrm{P}(t>3.043)=0.00438$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	7
(iv)	CI is $1.65 \pm$ $\begin{aligned} & k \times \frac{2.100}{\sqrt{15}} \\ & \quad=(0.4869,2.8131) \end{aligned}$ $\therefore k=2.145$ By reference to t_{14} tables this is a 95\% CI.	M1 M1 A1 A1 A1	ft ''s $\bar{x} \pm$. ft c's $s_{n 1}$. A correct equation in k using either end of the interval or the width of the interval. Allow ft c's \bar{X} and $s_{n 1}$. c.a.o.	5
				18

Q4				
(i)	Sampling which selects from those that are (easily) available. Circumstances may mean that it is the only economically viable method available. Likely to be neither random nor representative.	E1 E1 E1		3
(ii)	$\begin{aligned} & p+p q+p q^{2}+p q^{3}+p q^{4}+p q^{5}+q^{6} \\ & =\frac{p\left(1-q^{6}\right)}{1-q}+q^{6}=\frac{p\left(1-q^{6}\right)}{p}+q^{6} \\ & =1-q^{6}+q^{6}=1 \end{aligned}$	M1 A1	Use of GP formula to sum probabilities, or expand in terms of p or in terms of q. Algebra shown convincingly. Beware answer given.	2
(iii)	With $p=0.25$ $\begin{aligned} X^{2} & =0.04+0.0033+0.6136+0.5706+1.2069 \\ & +0.7204+7.8206 \\ & =10.97(54) \end{aligned}$ (If e.g. only 2dp used for expected f's then $\begin{aligned} & X^{2}=0.04+0.0033+0.6148+0.5690+1.2071 \\ &+0.7226+7.8225 \\ &=10.97(93)) \\ & \text { Refer to } \chi_{6}^{2} . \end{aligned}$ Upper 10\% point is 10.64 . Significant. Suggests model with $p=0.25$ does not fit.		9 0.079102 0.059326 0.177979 7.9102 5.9326 17.7979 Probabilities correct to 3 dp or better. $\times 100$ for expected frequencies. All correct and sum to 100 . c.a.o. Allow correct df (= cells -1) from wrongly grouped table and ft . Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>10.975\right)=0.0891$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
(iv)	Now with $X^{2}=9.124$ Refer to χ_{5}^{2}. Upper 10\% point is 9.236 . Not significant. (Suggests new model does fit.) Improvement to the model is due to estimation of p from the data.	M1 A1 A1 E1	Allow correct df (= cells - 2) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>9.124\right)=0.1042$ No ft from here if wrong. Correct conclusion. Comment about the effect of estimated p, consistent with conclusion in part (iii).	4
				18

